DYNAMICS OF THE CAVITATION ZONE DURING AN
UNDERWATER EXPLOSION NEAR A FREE SURFACE

V. K. Kedrinskii UDC 534,222.2+532.528

The problem of the development of the cavitation zone and the rarefaction wave profile in the
region of regular reflection of the spherical shock wave of an underwater explosion from a
free surface is analyzed for the axisymmetric formulation within the framework of a model
of the two-phase medium consisting of a liquid with cavitation nuclei of the free gas uniform-
ly distributed in it. An example of the calculation of the rarefaction wave profile and the
zone of visible cavitation at different times is given for the case of the explosion of 1-g
charge at depths of 3 and 5.3 cm for an initial volumetric gas concentration of 10"1f and an
initial cavitation nucleus radius of 5-107% cm. The results of the calculation are compared
with experiment.

INTRODUCTION

The question of the development of cavitation and the structural properties of the wave pattern near
the free surface of a liquid when the shock wave of an underwater explosion is reflected from it has been
analyzed in [1-6].

The parameters of the shock wave have been studied experimentally and an analysis has been made
of the development of the cavitation zone during the explosion of charges with weights of 1 g and 100 kg at
depths of 1-8 relative to the radii of the charges [1]. The zones of negative pressures near the free sur-
face during the underwater explosion of charges of 50, 100, and 5000 g at depths of 1-12 m have been cal-
culated on a computer in the acoustical approximation {4]. The zone of nonlinear interaction of the shock
wave of an underwater explosion with the free surface has been determined {2, 3]. The zone is bounded be-
low by the trajectory of the "triple" point at which the front of the attenuated shock wave, the undisturbed
front of the incident wave, and the rarefaction wave front converge. The "smooth" reduction in pressure
behind the front of the disturbance wave, which is characteristic of a nonlinear zone, gives reason to assume
that visible cavitation discontinuities do not develop in this zone. Consequently, the development of cavita-
tion can be observed only in the region of regular reflection, for which the acoustical approximation (2, 6],
using the principle of superposition of the pressure field from the explosion of an imaginary charge, is
valid. Within the framework of a one-phase liquid, however, the use of this principle leads to overstate-
ment (sometimes by several orders of magnitude) of the absolute values of the negative pressures com-
pared with their true values [6]. In this connection the results of the study of the strength characteristics
of liquids [7] are used in some works [5, 8], assuming that liquids do not withstand large tensions, the
limiting value of which should have the order of the vapor saturation pressure, i.e., should be close to zero.

1t is known [8] that real liquids, including distilled water, contain free gas for which the volumetric
concentration and the size of the cavitation nuclei are determined by the state of the liquid. In connection
with this it is quite natural in models of the development of the cavitation zone to take into account the al-
ready existing gas bubbles and to determine their effect on the process under investigation, without ad-
dressing the problem of the formation of the cavitation nuclei. In this sense the closest to this problem are
[9, 10], in which the conditions of the start of the growth of a single spherical gas bubble in a viscous in-
compressible liquid under the effect of a sharp pressure drop are studied, According to [10], the cavitation
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is characterized primarily by the unbounded bubble growth (at a constant negative pressure), and in this
case the decisive role is played by the amount of gas in the bubbles and not by the viscosity and the thermo-
dynamic state. This formulation is interesting and in combination with the acoustical method of determining
the negative pressure it can be used for certain estimates of the development of the cavitation zone.

An approach like that of [9, 10] cannot describe an actual process, since it does not allow for the in-
teraction of the gas cavities during their expansion and the effect of their dynamics on the tensile stresses
in the cavitation zone. In connection with this, the principal attention in the present work will be paid to a
new formulation: the development of cavitation near the free surface of a liquid containing bubbles of free
gas upon the application of negative pressure. The approach to the problem is similar to that of [11] in
many ways.

1. Estimate of the Cavitation Region Based on the

Dynamics of a Single Gas Bubble

Following {9, 10], iet us consider the problem of the behavior of a cavitation nucleus in a rarefaction
wave in the case of the instantaneous application of negative pressure (the liquid is ideal and incompressi-
ble).

We introduce the dimensionless variables and parameters

20

R=Ry; £=R,Vo/pt; P=pP; W=p-.

where Rj and p; are the initial radius of the bubble and gas pressure in it; ¢ is the surface-tension coeffi-
cient; p is the density of the liquid. The equation of pulsation of the bubble has the form

yy+3/2pr=y—v— Zi’_p. 1.1)
When 7=0,y=1,andy =0

p— —n 0 <t VPD/POT/Rm
PelDy T > VPO/POT/ROs

where p,, is the undisturbed pressure at infinity. The value of py is determined from the condition of
equilibrium of the bubble when 7 < 0(p = pg):

Po=DPe + 20/R,,.
Equation (1.1) can be represented in the form
d .59 __ 9,2~3% — 92

The first integral of Eq. (1.2) with P = =% = const has the form

- J— g 3 2
P=—y v[(f ) ———E—W(y“—i)-‘rn"(ﬁ—i)].

It can be noted that ¥ rapidly reaches the asymptotic value (¥%7°)¥2 when 7 >1. In this case the current
value of the radius of the cavitation nucleus is determined with a sufficient degree of accuracy by the ex-
pression

o

Yy~ ( n“)“z 1. (1.3)

If at t = T the pressure again becomes equal to atmospheric pressure (P, ), then the next stage of the ex-
pansion of the bubble to its maximum size is determined by the inertial motion for t = T:

725



% (1°%?) > — 20°P=/Py

with the initial values
¥ = (—%— N")UZ, Y= (% n"po/po)u2 T(R,,
from which the maximum bubble radius is determined by the expression
Ymax = U3 (1 +3 i/fpo/poo)us - (1.4)

or

Ymax = 0. 815 (10p, ) T Ry oy 2p5 2.

The expressions (1.4) or (1.3) allow one to determine the maximum radius of a eavitation bubble ex~
panding in a rarefaction wave, If it reaches visible size (1072-107! ¢m) [9] we consider that cavitation has
developed. Here the condition of the appearance of cavitation essentially depends on the correctness of the
choice of mp, (the maximum pressure in the rarefaction wave in absolute value) and T. The value of Ry can
be taken from the well-known experimental data of [8].

Within the framework of the acoustical model we can estimate the pressure near the free surface in
the region of regular reflection during shallow underwater explosions (H £ 10qq is the depth of submersion
of the charge of radius @;). When the principle of superposition is used the negative pressure at a specific
point of the region under consideration will be determined by the time which elapsed from the moment the
shock-wave front (SWF) passed this point until the arrival of the rarefaction wave and by the nature of the
pressure drop behind the shock-wave front. Consequently, for shallow explosions the lag time for the re-
gion of ry = H should allow for the velocity of the shock-wave front up to the time of its reflection from the
surface. Finally, the pressure in dimensionless form is determined by the expression

e A () D) e P B _ gy ,—m 1.5
p=A(r)r; {0_368[5.‘1 (ﬁ;i) A{n)yr , (1.5)

where

H
J U~tdz 4 D (r— H)le,

b i (1.6)

n<H;

5.88-10 Dm0 T

S Seuls .
B 5.88-10 bcqmrd:22! >4

m = (%7ppc)"%; ¢y is the velocity of sound in the undisturbed liquid; D is the detonation velocity of the ex-

plosive charge (EC); U is the velocity of the shock-wave front with respect to D, all the linear values are

normalized to a;, and the subscript 1 pertains to the coordinate of a point in the system connected with the

‘real charge. In Eq. (1.6) we use the expressions for

9? (r) = 97.6G13 (Gilsr—l)—o.zz;

Gi3 — 0.1% 3]/[2;_“%(3’

where 8] (r) is the decay constant behind the shock-wave front, isec; G is the weight of the charge, kg; r is
inm; pPpe is the density of the EC, g/em?®; a; is in cm. The constants A and a are determined, for exam~
ple, from the following data [6, 12]:
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r=4 1433 143 — 2.31; 231 — 4.0; 4.0 —12; > 1%
4, =1.82.10%  1.325-10%; 9.10%  3,7-10% 1.47-10%
a= 5.4 2.6; 2.43; 1.5, 1.3

According to estimates which have been made, for the expansion of a cavitation bubble to visible size
in a time interval T it is necessary that the amplitude of the negative wave be no lower than that determined
by Eq. (1.3). We call this the critical pressure T and from it we estimate the upper boundary of the cavita-
tion zone, Near the free surface we have T« = —A (r)r B and after simple transformations we obtain
the following expression for the coordinates of the boundary:

1.787, (22 - H?) 0,61+0/2
y= megHA 4

(1.7)

where all the linear values are expressed with respect o @y and A = A(\/’ x% + H?), For the case of a; =
0.53 cm, Ppc = 1.6 g/em®, H = 3 em, and Ry = 107 cm the critical pressure isT* = 100 and x and y have the
following values:

Vom= 033 0.5; 0.8; 1.3;19; 26;3.5;
Ty e =16.9; 28,2; 39,5; 50.8; 62; 73,3; 84.6.

The pressure region around the explosion cavity calculated from (1.5) with the conditions indicated
above is presented in Fig, 1 and the position of the rarefaction-wave front (RWF) at different times is
marked; 6 (x) (dashed line) is the upper boundary of the cavitation zone according to (1.7); 6; (x) (crossed
line) is the upper boundary of the cavitation zone obtained through an approximation of certain solutions for -
the trajectory of the "triple™ point in the case of irregular reflection of the shock wave from the free sur-
face S.

In this formulation the negative pressures turn out to be unrealistically large, while the determination
of the moment of appearance of a visible bubble and of the boundary of the cavitation zone requires the in-
troduction of a number of additional assumptions which are considerably more difficult to justify.

2. Two~Phase Model of Development of Cavitation Zone

Let us consider the problem of the formation of the cavitation zone within the framework of the model
of a two-phase medium consisting of a liquid containing cavitation nuclei, retaining the same principle of
the superposition of the pressure field from an imaginary charge. While p(t) is known [6, 12] for a one-
phase medium, in the ease of a two-phase medium the pressure will depend on the volumetric concentration
k(t) of free gas in the liquid and the relationship p (k {t)) has to be found. The pressure of a two-phase med-
ium is described by a system of equations of hydrodynamics, a characteristic of which is the complicated
form of the notation of the equation of state of the medium, including a nonlinear second-order equation for
the pulsating cavitation bubble [11, 13-15].
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We can write the system in the linearized form

Pr+uz+vy=0, u;+p:3=0, v;+p,3=0, (2.1)
0= (14 Roh) 1, = — k1 3(p—k—),

where P, u, v, and p are the averaged values of the density, velocity components, and pressure in the med-
ium; Ry is the initial radius of the cavitation bubble; k is the volumetric concentration of gas in the medium;

u = Vp,/3pgu';

v="V 0,/3p,v"; t= 1/43170/903% t; z=21a/Ry;
Y=Yy IRy k=Fk'Iky; p=p'Ips; 0=0"I0o;
E=(R"3.
The dimensional values are given primes. Here we assume that:

1) the characteristic dimension L of average motion, the average distance ! between bubbles, and the
bubble radius R satisfy the inequalities L »>1 »R;

2) the asphericity of the bubbles, the mass of the gas in them, and their motion relative to the liquid
can be neglected;

3) the bubbles are the same size and are uniformly distributed in the liquid;
4) the liquid component of the medium is incompressible.

From (2.1) one can obtain

Peat Pyy+3hofey =0; (2.2)
hyy—=—k%p — k).

Let us introduce the new variables x; = V 3k0k1; 3%, yo= v 3k0k1/ 3y and the new unknown function & =
p—kY. With allowance for the additional assumptions of the smallness of terms of the types vk Jr_ikxx
and xkx/ 6 in comparison with £y and k, respectively, from (2.2) we have

AT=¢. (2.3)

An upper estimate of the error introduced by the additional assumptions can be made on the basis of
the expression (1.3) for a single bubble.

In the case of the explosion of a spherical charge near a free surface the problem can be analyzed in
an axisymmetric formulation, and then (2.3) in the polar coordinates ry, § has the form

-2 8 3t 9 . —4p O . %___' 9 4
Mo g T0 5 T 70 sin 0s5sindz-=1. (2.4

The solution is sought for in the form £ = R%. From (2.4) we obtain the following equations for R’
and ©;
d [ 2dR
72 ()~ [ +ve ) R =0,

sin'0-L 5in0 % +v(y+1)0=0,

where the constant of separation of variables is denoted through v(¥ + 1). The solution of these equations
consists of spherical Legendre functions

0=4Py(cos0)+BQy (cosb)
and modified Bessel functions

RO = rg 2 (Clygaya (ro) + DKy (ro))-
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Because of the boundedness of the solution in the region under consideration, determined by the inter-
vals of variation 0 = 6 = 7T and ry > 0, the coefficients B and C must be set equal to zero {I(ry) = « as
To— ©, Q(cosf) = « as cos 6 — 1). Finally, we can write the solution of (2.4) with ¥ =n(n=0, 1, 2,..:)
in the form

£ 2 i AnKoi1)2(r) Pr (cos 0). (2.5)

Here and afterward the subscript zero is dropped from r.

With allowance for what has been said above, the problem of the development of the cavitation region
is formulated as follows.

Suppose that in an unbounded liquid, which contains cavitation nuclei of radius Ry with a volumetric
gas concentration ky, there are two cavities of radius @; containing the detonation products and located at
the points O and Oy at a distance h from one another. The two cavities can expand in accordance with an
adiabatic law, the initial pressure in them is known and equal to p (0), and the values of a(t) and the adiabatic
index 74 of the detonation products are also known. We assume that p (0) = pyy, = pg, < 0 at the point O and
p(0) = pr o= pg” > 0 at the point O; and we phase shift the time of application of the pressure field from the
explosion of the imaginary charge by the factor o, (t—[r—r;1/cy), thereby modeling the delay in the arrival
of the rarefaction wave at a given point. In such a case the pressure at any point of the medium is deter-
mined by the superposition of solutions of the type (2.5):

L=1"""04-3 AnKni12(r) Pa(cos 0) +ri™? 3 BuKnyi (ry) Pp (cos 6),
n==0 n=0 ’

where o,= { (1) tt><(r(r ;‘) /rcl)./ % r andr; are the coordinates of the point under consideration in the systems
—1)/%0s

with centers at O and Oy, respectively; ¢, is the dimensionless velocity of sound in the undisturbed liquid;
the coefficients Ay and By, are found from the conditions at the boundaries of the cavities containing the
detonation products:

C=Pa(t) < 01 r =aa(t),
L=Pas(t) > 0.r,=aa,(t).

Here o = v 3k0k1/ 3ay /R, while Py and py 4 are the pressures which are known at any moment. Dropping the
awkward expressions for the coefficients A, and B, and assuming that agy «<h, we finally find that

{~ _:' Pao'oe_a(r_a) + % Paie—a(rl_a‘)'

Here and later all the linear values are expressed with respect to ay: r =r'/ay, ry = rl'/ao, a=a'la,.
This expression in the first approximation determines the unknown relation p(k).

Thus, the problem of the development of cavitation near a free surface comes down to the solution of
a system of equations relative to p and k:

— 3P YV 3prl/3 80 . — a H
(p— k%)% = ‘;1 o V akak13 2 (ri—ay) a—3nHg, e—V3k»k“3R—:(Vrf+h=_zm, cosel_a), (2.6)
1

o Vrf ~+ k% — 2hr; cos 0,
a2k ), [dk \2
ke P (p—k ”)—,—(H)/Gk,
where

t=0 k=1, -k:O, a=1,

and a; is determined by the following empirical functions for small explosive charges:
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Fig. 2

@y~ 1+0.022-40%7/a,, T << 10—4:sec,
ay=~=158.5(v/ag)* , T > 10—*%sec,

where T =t + (r—rl)/ ¢y (the latter expression for ay is taken from [186]).

As the calculation showed, the cavitation nuclei reach visible sizes (10~2-10"! cm) after a short time
and therefore in many cases a(t) can be set equal to unity. It was mentioned earlier that [8] contains infor-
mation, generalized on the basis of numerous experiments, on the state of free gas in liquids, which can be
employed for the selection of the proper k; and Ry. For example, for water which has been standing k; =
10"2-10" and Ry = 5+ 1075 cm, while for relatively fresh water ky = 1079-1078 and Ry = 5 107° cm.

Calculations of the development of the cavitation zone were performed for different Ry, kq, @, and h,
In Fig. 2a we present the results of the calculation of the visible cavitation zone (darkened region) for t =
16, 32, 48, and 64 fsec with h'/2 = 5.3 cm, ky = 107, Ry = 5-107% em, a; = 0.53 cm (1 g EC), p(0) = 4. 10*
atm, and ¥; = 3. The sizes of the cavitation nuclei in it reached = 10~? cm by the indicated times. Frames
of high-speed photography of the development of the cavitation zone upon the explosion of a 1-g charge at.
a depth of 5.3 cm are shown for comparison in Fig, 2b for the same times as in Fig. 2a. In the solution of
system (2.6) the dynamics of the bubbles was taken into account only in the phase of negative pressure be-
cause of the extreme smallness of k; and Ry.

The system (2.6) also allows one to determine the profile of the rarefaction wave in the cavitation
zone. As the calculation showed, p (k(t)) depends essentially on the rise time of the rarefaction-wave front,
which is regulated by the factor 0 in the first equation of (2.6). The value of 0; can be taken as unity at
the time t = 0 (the case of the instantaneous application of the maximum negative pressure) or represented
in the form of a time function which determines the law of pressure rise in the rarefaction-wave front — the
"pile~up" of the front. The latter is determined either experimentally or, for example, numerically on the
basis of the data of [2, 6] from the difference in the times of arrival at the point under consideration of the
characteristics of the rarefaction wave with zero and maximum amplitudes. In Fig. 3 we present the p (t)
profiles for three relative distances from the center of the charge on the axis of symmetry calculated from
(2.6) with ky = 1071, Ry = 5+107° cm, h'/2 = 3 cm, and p (0) = 4+ 10% atm. The rarefaction-wave profiles
in the case of a one-phase liquid are shown by dashed lines, while those calculated from the two-phase mod-
el for a rise time of 0.1 psec for the rarefaction-wave front are shown by solid lines. Profiles of the
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rarefaction wave with different "pile-ups” of its front are shown in the middle of Fig. 3 for two cases: Fig,
3a with r{ = 5, the negative pressure is applied instantaneously, the dashed line is the profile in a one-phase
liquid, and the solid line is the profile in a two-phase liquid; it is seen that large negative pressures are
retained in the cavitation zone for about 0.05-0.1 isec (the calculation coincides with the known experimen-
tal data); Fig. 3b with ry = 3.5; 0.1-psec "pileup" of the front, dashed-dot line (corresponds to the solid line
in the main drawing for the same ry), maximum amplitude has decreased more than fivefold in comparison
with a one-phase liquid; 1~ sec "pileup” of front, solid line, here the maximum amplitude is already 30
times smaller than in a one-phase liquid.

In Fig. 3a the negative pressure hasalmost completely disappeared in a time of ~0.1 #sec, while the
cavitation bubble has not even reached its visible size by this time; in Fig. 3b the pressure disappears when
the bubble has expanded to about half of its maximum radius.

Oscillograms of the pressure taken at a distance of 14 cm from a 1-g charge in "deep" water (Fig.
4a) and at a distance of 4.5 cm below the free surface over the charge (Fig. 4b) are presented for a qualitative
comparison in Fig. 4. The amplitude of the maximum pressure in the shock wave (Fig. 4a) is about 380 atm;
the amplification scale for the measurement of pressure in the rarefaction wave (Fig. 4b) is increased by
10 times; the experimental value of the maximum amplitude of the rarefaction wave is 20 atm, while that
calculated by the scheme of an imaginary source for a one-phase liquid is 217 atm.

In Fig. 5 we show the dependences k (t) with a, = 0.53 em, h'/2 = 5.3 cm, ko= 1071, Ry = 5-107% cm,
and p (0) = 4-10* atm for points 1-3 on the axis of symmetry and points 4-6 along a radial line at an angle
63 = 70° to the axis: for all the curves plotted the time t = 0 corresponds to the moment of arrival of the
rarefaction wave front at the given point. The position of the charge and of points 1-6 relative to the free
surface are shown in Fig. 5 for clearness. The gas concentrations corresponding to the visible size of a
cavitation bubble are marked by a dashed line. The time interval between the two moments when the k (t)
curve crosses the dashed line determines the "lifetime" of a visible bubble at the given point: the visible
cavitation disappears in about 400 Ksec at the axis and at point 4 on the radial line.

We note that at a given moment the gas concentration can vary by an order of magnitude or more over
a cross section of the cavitation zone, which corresponds to different intensities of darkening of the zone.

The calculated results presented give reason to assume that the proposed two-phase model of the
development of the cavitation zone satisfactorily deseribes the process of development of the zone and makes
it possible to construct a rarefaction-wave profile which is close to the actual profile.
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