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The problem of the development of the cavitation zone and the ra re fac t ion  wave profile in the 
region of regular  ref lect ion of the spherical  shock wave of an underwater explosion f rom a 
free surface is analyzed for the ax isymmetr ic  formulation within the f ramework of a model 
of the two-phase medium consist ing of a liquid with cavitation nuclei of the free gas uniform- 
ly distributed in it. An example of the calculation of the rarefac t ion  wave profile and the 
zone of visible cavitation at different t imes is given for the case of the explosion of 1-g 
charge at depths of 3 and 5.3 cm for an initial volumetric gas concentrat ion of 10 - l l  and an 
initial cavitation nucleus radius of 5 �9 10 -5 cm. The resul ts  of the calculation are  compared 
with experiment.  

I N T R O D U C T I O N  

The question of the development of cavitation and the s t ructural  proper t ies  of the wave pat tern near 
the free surface of a liquid when the shock wave of an underwater explosion is ref lected f rom it has been 
analyzed in [1-6]. 

The paramete r s  of the shock wave have been studied experimental ly and an analysis  has been made 
of the development of the cavitation zone during the explosion of charges  with weights of 1 g and 100 kg at 
depths of 1-8 relat ive to the radii  of the charges  [1]. The zones of negative p r e s su re s  near the free sur -  
face during the underwater explosion of charges  of 50, 100, and 5000 g at depths of 1-12 m have been ca l -  
culated on a computer in the acoust ical  approximation [4]. The zone of nonlinear interaction of the shock 
wave of an underwater explosion with the free surface has been determined [2, 3]. The zone is bounded be-  
low by the t r a jec to ry  of the tltriple~ point at which the front of the attenuated shock wave, the undisturbed 
front of the incident wave, and the ra refac t ion  wave front converge.  The nsmooth" reduction in p res su re  
behind the front of the disturbance wave, which is charac te r i s t ic  of a nonlinear zone, gives reason  to assume 
that visible cavitation discontinuities do not develop in this zone. Consequently, the development of cavi ta-  
tion can be observed only in the region of regular  reflection, for which the acoust ical  approximation [2, 6], 
using the principle of superposit ion of the p res su re  field f rom the explosion of an imaginary charge,  is 
valid. Within the f ramework of a one-phase liquid, however, the use of this principle leads to overs ta te -  
ment (sometimes by severa l  o rders  of  magnitude) of the absolute values of the negative p r e s s u r e s  c6m-  
pared with their true values [6]. In this connection the resu l t s  of the study of the strength charac te r i s t i c s  
of liquids [7] a re  used in some works [5, 6], assuming that liquids do not withstand large tensions,  the 
limiting value of which should have the order  of the vapor saturation pressure ,  i.e., should be close to zero.  

It is known [8] that r ea l  liquids, including distilled water,  contain free gas for which the volumetric 
concentration and the size of the cavitation nuclei are  determined by the state of the liquid. In connection 
with this it is quite natural  in models of the development of the cavitation zone to take into account the a l -  
ready existing gas bubbles and to determine their  effect on the process  under investigation, without ad- 
dress ing the problem of the formation of the cavitation nuclei. In this sense the c loses t  to this problem are  
[9, 10], in which the conditions of the s tar t  of the growth of a single spherical  gas bubble in a viscous in- 
compress ib le  liquid under the effect of a sharp p ressu re  drop are  studied. According to [10], the cavitation 
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is charac te r i zed  pr imar i ly  by the unbounded bubble growth (at a constant negative pressure) ,  and in this 
case the decisive ro le  is played by the amount of gas in the bubbles and not by the viscosi ty  and the the rmo-  
dynamic state. This formulat ion is interest ing and in combination with the acoust ical  method of determining 
the negative p ressu re  it can be used for cer ta in  est imates  of the development of the cavitation zone. 

An approach like that of [9, 10] cannot descr ibe an actual p rocess ,  since it does not allow for the in- 
teract ion of the gas cavities during their  expansion and the effect of their  dynamics on the tensile s t r e s s e s  
in the cavitation zone. In connection with this, the principal attention in the present  work will be paid to a 
new formulation: the development of cavitation near the free surface of a liquid containing bubbles of free 
gas upon the application of negative p ressure .  The approach to the problem is s imi lar  to that of [11] in 
many ways. 

1. E s t i m a t e  o f  t h e  C a v i t a t i o n  R e g i o n  B a s e d  on  t h e  

D y n a m i c s  o f  a S i n g l e  G a s  B u b b l e  

Following [9, 10], let us consider  the problem of the behavior  of a cavitation nucleus in a ra re fac t ion  
wave in the case  of the instantaneous application of negative p re s su re  (the liquid is ideal and i ncompres s i -  
ble). 

We introduce the dimensionless  var iables  and pa ramete r s  

R 'Roy; t~= Ro]/'pT~.poT; ' P 20" =.  P,=Po ; W=Bo:~o. 

where R 0 and P0 are  the initial radius of the bubble and gas p r e s s u r e  in it; q is the sur face- tens ion  coeffi-  
cient; P0 is the density of the liquid. The equation of pulsation of the bubble has the form 

gy+3/2"g~ = y-3V_ _.W p. (i. I) 
y 

W h e n ~ ' = 0 ,  y = l ,  a n d ~ = 0  

p I - ~  o o ~ < V po/eoZ/Ro, 
=(P~/Po ~ > ]/Po/poT/Ro, 

where p~ is the undisturbed p res su re  at infinity. The value of P0 is determined f rom the condition of 
equil ibrium of the bubble when 1- < 0 (p = p~): 

Po=P~ "-k 2a/Ro. 

Equation (1.1) can be represen ted  in the form 

d g3"u2 = 2gZ-3~ _ 2gW --  2g~P. 
dy " 

The f i rs t  integral  of Eq. (1.2) with P = _~.0 = const  has the form 

(1.2) 

2 [< ] Y~ -XY-~ u3-3~-1 ) -  3 w(y'- t)+~O(y" t) 

It can be noted that ~r rapidly reaches  the asymptotic value (2/{r~ when 7r~ In this case the cur ren t  
value of the radius of the cavitation nucleus is determined with a sufficient degree of accuracy  by the ex- 
press ion  

[ 2 o~i/z 
y ~ - ~ - a )  T. (1.3) 

If at t = T the p ressu re  again becomes  equal to atmospheric  p ressu re  (P~o), then the next stage of the ex- 
pansion of the bubble to its maximum size is determined by the inertial motion for t >- T: 
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d 3"2 ~ -  (Y Y ) - -  - -  2y~p~o/po 

with the initial values 

2 o t/2 

f rom which the maximum bubble radius  is determined by the expression 

" 2 / '~t13 
3 YtPo P } Ymax = Yl i -~- -~ -  (1.4) 

o r  

Ymax ~ O, 815 (n~ 

The expressions (1.4) or (1.3) allow one to determine the maximum radius  of a cavitation bubble ex- 
panding in a ra refac t ion  wave. If it r eaches  visible size (10-2-10 -1 cm) [9] we consider  that cavitation has 
developed. Here the condition of the appearance of cavitation essential ly depends on the co r rec tnes s  of the 
choice of v~ 0 (the maximum pres su re  in the ra refac t ion  wave in absolute value) and T. The value of R 0 can 
be taken from the well-known experimental  data of [8]. 

Within the f ramework of the acoust ical  model we can est imate the p r e s s u r e  near the free surface in 
the region of regular  ref lect ion during shallow underwater explosions (H ~ 10a 0 is the depth of submers ion 
of the charge of radius  a0). When the principle of superposition is used the negative p ressu re  at a specific 
point of the region under considerat ion will be determined by the time which elapsed from the moment the 
shock-wave front (SWF) passed this point until the a r r iva l  of the ra re fac t ion  wave and by the nature of the 
p ressure  drop behind the shock-wave front. Consequently, for shallow explosions the lag time for the r e -  
gion of r I <- H should allow for the velocity of the shock-wave front up to the t ime of its ref lect ion f rom the 
surface.  Finally, the p res su re  in dimensionless form is determined by the express ion 

p == A (rl) r~ -a(r') / e -~  (~ ~ 1) __ A (r) r -=(r), 
[0 3 6 8 ~ - '  (~ > i) 

(1.5) 

where 

H �9 

U - i  dx + D (r - -  H)/c o 
rl  

~ =  5 . 8 8 . t O - - 6 D m r  0 ' 2 2  • r l ~ H ;  (1.6) 

r - -  r I 

= 5.88. lO--6comr~ ,~2~ rl  :> I-I; 

m = (~/37rPEc,)~ c o is the velocity of sound in the undisturbed liquid; D is the detonation velocity of the ex- 
plosive charge (EC); U is the velocity of the shock-wave front with respect to D, all the linear values are 
normalized to ao, and the subscript 1 pertains to the coordinate of a point in the system connected with the 
r e a l  charge. In Eq. (1.6) we use the expressions for 

0 ~ ( r ) =  97.6G t/3 (Gi/3r--t)-~ 
" 3 

G t/3 0 la o ~ 4--zP_ �9 , 
= " ] 3 ~ 

where 0~ (r) is the decay constant behind the shock-wave front, ~sec ;  G is the weight of the charge,  kg; r is 
in m; PEC is the density of the EC, g/cm3; a 0 is in cm. The constants A and ~ a re  determined,  for exam- 
ple, f rom the following data [6, 12]: 
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r = i  --  t.13; 

A, arm =:i ,82" 105 ; 
~z= 5.4; 

1.13 -- 2.31; 2,3t -- 4,0; 4,0 -- 12; > i2; 
i,325.10s; 9.i0~; 3,7.t0~; 1,47.10a; 

2,6; 2A3; t,5; t,i3. 

According to es t imates  which have been made, for the expansion of a cavitation bubble to visible size 
in a t ime interval T it is neces sa ry  that the amplitude of the negative wave be no lower than that determined 
by Eq. (1.3). We call  this the cr i t ica l  p r e s su re  iv, and frop% it we est imate  the upper boundary of the cavi ta-  
t ion  zone. Near the free surface we have lr. -~ - A  ( r ) r -~ ( r ) f l  and after  simple t ransformat ions  we obtain 
the following express ion for the coordinates of the boundary: 

1.78~, (x s + H s) 0,6i-}-c~/2 
Y ~ (1.7) 

. _ _ m c o H  A 

where all the l inear values a re  expressed  with respec t  to a 0 and A = A(~x2 + H2). For  the case of a 0 = 
0.53 cm, PEC = 1.6 g / c m  3, H = 3 cm, and R 0 = 10 -6 cm the cr i t ica l  p r e s su re  is~* = 100 and x and y have the 
following values:  

g'mm= 0.3; 0.5; 0,8;  i,3; 1,9; 2,6; 3.5; 
X,min=16,9; 28,2; 39,5; 50,8; 62; 73,3; 84,6. 

The p re s su re  region around the explosion cavity calculated f rom (1.5) with the conditions indicated 
above is presented in Fig. 1 and the position of the ra re fac t ion-wave  front (RWF) at different t imes is 
marked;  ~(x) (dashed line) is the upper boundary of the cavitation zone according  to (1.7); 6 t (x) (crossed 
line) is the upper boundary of the cavitation zone obtained through an approximation of cer ta in  solutions for 
the t r a j ec to ry  of the "tr iple" point in the case of i r regular  ref lect ion of the shock wave f rom the free sur-  
face S. 

In this formulation the negative p r e s su re s  turn out to be unreal is t ical ly  large,  while the determination 
of the moment of appearance of a visible bubble and of the boundary of the cavitation zone requ i res  the in- 
troduction of a number of additional assumptions which are  considerably more  difficult to justify. 

2 .  T w o - P h a s e  M o d e l  o f  D e v e l o p m e n t  o f  C a v i t a t i o n  Z o n e  

Let us consider  the problem o f  the formation of the cavitation zone within the f ramework  of the model 
of a two-phase medium consist ing of a liquid containing cavitation nuclei,  retaining the same principle of 
the superposit ion of the p res su re  field f rom an imaginary charge.  While p (t) is known [6, 12] for a one- 
phase medium, in the case  of a two-phase medium the p re s su re  will depend on the volumetr ic  concentrat ion 
k (t) of free gas in the liquid and the relat ionship p (k (t)) has to be found. The p r e s s u r e  of a two-phase med-  
ium is described by a sys tem of equations of hydrodynamics ,  a charac te r i s t i c  of which is the complicated 
form of the notation of the equation of state of the medium, including a nonlinear second-order  equation for 
the pulsating cavitation bubble [11, 13-15]. 
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We can write the system in the l inearized form 

I ; 0 9t+ux+vtl=O, ut+p~: 3=0, vt~Pu 3= , 
p--(1 + L'o/:) -1, ]"tt :- --kl'3(p--k-7), 

(2.1)  

where P, u, v, and p are  the averaged values of the density, velocity components,  and p res su re  in the med- 
ium; R 0 is the initial radius of the cavitation bubble; k is the volumetr ic  concentrat ion of gas in the medium; 
u = ~o-J~0ut ;  

v V ' ' t t /  ~ '  = p0/3Po v ; = 3po/poRo t ; x---- xr/Bo; 

' R  Y=Y / 0; k=k'/ko; P=P'/Po; P----P'/Po; 
k ' = ( R ' y .  

The dimensional values a re  given pr imes .  Here we assume that: 

1) the charac te r i s t ic  dimension L of average motion, the average distance I between bubbles, and the 
bubble radius R satisfy the inequalities L >> l >>R; 

2) the aspherici ty  of the bubbles, the mass  of the gas in them, and their  motion relat ive to the liquid 
can be neglected; 

3) the bubbles are  the same size and a re  uniformly distributed in the liquid; 

4) the liquid component of the medium is incompressible .  

F r o m  (2.1) one can obtain 

Px~ + Puu ~- 3koktt=O; (2.2) 
ktt =--kVa(p - -  k-v). 

Let  us introduce the new variables  x0 = ~ x ,  Y0 = 43k0kl/3Y and the new unknown function : = 
p - k - T .  With allowance for the additional assumptions of the smallness  of t e r m s  of the types Tk-T-lkxx 
and xkx/6 in compar ison with ~xx and k, respect ively ,  f rom (2.2) we have 

A~----~: (2.3) 

An upper estimate of the error introduced by the additional assumptions can be made on the basis of 
the expression (1.3) for a single bubble. 

In the case of the explosion of a spherical charge near a free surface the problem can be analyzed in 
an axisymmetric formulation, and then (2.3) in the polar coordinates r 0, e has the form 

ro~.~ror~ro+ro sm 0-~- 0 s i n 0 ~ =  ~: (2.4) 

The solution is sought for in the form ~ = R~ F r o m  (2.4) we obtain the following equations for R ~ 
and O: 

df d,*  1)JR~ dr: / - + = o; 

d . dO sin - i  0 ~ sin 0 ~ -  "F V (v -F l) 0 :=- O, 

where the constant of separat ion of var iables  is denoted through v(v + 1). The solution of these equations 
consis ts  of spherical  Legendre functions 

and modified Bessel  functions 

O=APv(cos0)+BQ~ (cos0) 

R ~ ----- ro i/2 (CI~+t/2 (ro) -}- DK~+i/~ (ro)): 
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B e c a u s e  of the  b o u n d e d n e s s  of the  so lu t i on  in the  r e g i o n  unde r  c o n s i d e r a t i o n ,  d e t e r m i n e d  by  the  i n t e r -  
va l s  of v a r i a t i o n  0 - 0 <- ~r and  r0 > 0, the  c o e f f i c i e n t s  B and C m u s t  be  s e t  equa l  to z e r o  (I(r  0) - -  ~ a s  
r 0 -* oo, Q (cos  0) - -  ~ a s  cos  0 -* 1). F i n a l l y ,  we can  w r i t e  the  so lu t i on  of  (2.4) wi th  u = n ( n  = 0, 1, 2 , . .  ;) 
in the f o r m  

= r - ' / 2  ~] AnK,~+,/2 (r) P,~ (cos 0). (2.5) 
n,=O 

H e r e  and a f t e r w a r d  the  s u b s c r i p t  z e r o  i s  d r o p p e d  f r o m  r .  

With  a l l o w a n c e  for  wha t  h a s  b e e n  s a i d  above ,  the  p r o b l e m  of the  d e v e l o p m e n t  of the  c a v i t a t i o n  r e g i o n  
i s  f o r m u l a t e d  a s  fo l lows .  

Suppose  tha t  in an unbounded  l iqu id ,  which  c o n t a i n s  c a v i t a t i o n  n u c l e i  of r a d i u s  R 0 with  a v o l u m e t r i c  
gas  c o n c e n t r a t i o n  k0, t h e r e  a r e  two c a v i t i e s  of  r a d i u s  a 0 c on t a in ing  the  de tona t ion  p r o d u c t s  and  l o c a t e d  a t  
the  po in t s  O and O l a t  a d i s t a n c e  h f r o m  one a n o t h e r .  The  two c a v i t i e s  can  e x p a n d  in a c c o r d a n c e  with  an 
a d i a b a t i c  law,  the  i n i t i a l  p r e s s u r e  in t h e m  i s  known and  equal  to p (0), and  the  v a l u e s  of a(t) and  the  a d i a b a t i c  
index  T1 of the  de tona t ion  p r o d u c t s  a r e  a l s o  known. We a s s u m e  tha t  p (0) = P im = P~ < 0 at  the  po in t  O and  
p (0) = PRe = P~ > 0 a t  the  po in t  O l and  we p h a s e  sh i f t  the  t i m e  of a p p l i c a t i o n  of the  p r e s s u r e  f i e ld  f r o m  the  
e x p l o s i o n  of the  i m a g i n a r y  c h a r g e  b y t h e  f a c t o r  a0 ( t - [ r - r l ] / c 0 ) ,  t h e r e b y  m o d e l i n g  the  d e l a y  in the  a r r i v a l  
of  the  r a r e f a c t i o n  wave  a t  a g iven  point .  In such  a c a s e  the  p r e s s u r e  a t  any  poin t  of the  m e d i u m  is  d e t e r -  
m i n e d  by  the  s u p e r p o s i t i o n  of  s o l u t i o n s  of the  t ype  (2.5): 

c o  

= r--t/2 (~0:!~_~ AnK,~+t/2 (r) Pn (cos O) -}- r~ -i/2 ~ BnKn+i/2 (rx) Pn (cos 01) , 
~=0 n=O 

w h e r e  % =  {0  t < ( r - - r l ) / c 0 ,  i t>(r--r~)/Co; r and  r i  a r e  the  c o o r d i n a t e s  of the  po in t  unde r  c o n s i d e r a t i o n  in the  s y s t e m s  
% 

with c e n t e r s  a t  O and Ol,  r e s p e c t i v e l y ;  c o is  the  d i m e n s i o n l e s s  v e l o c i t y  of sound  in the  u n d i s t u r b e d  l iquid ;  
the  c o e f f i c i e n t s  A n and B n a r e  found f r o m  the  cond i t i ons  a t  the  b o u n d a r i e s  of  the  c a v i t i e s  c on t a in ing  the  
de tona t ion  p r o d u c t s :  

~=p~(t) < O, r =aa(t), 
~=pal(t) > O,rl=aal(t). 

H e r e  ~ = ~3k0 k1/3 a 0 / R  0 wh i l e  p~ and Pc~l a r e  the  p r e s s u r e s  which a r e  known at  any m o m e n t .  D r o p p i n g  the  
a w k w a r d  e x p r e s s i o n s  for  the  c o e f f i c i e n t s  A n and  B n and a s s u m i n g  tha t  (~a I << h,  we f i na l l y  f ind t ha t  

~'~ + P~(IO e-~(r-a)  -r-" -~xal p ~ t e - - C t ( r l - - a ~ )  . 

T 
H e r e  and l a t e r  a l l  the  l i n e a r  v a l u e s  a r e  e x p r e s s e d  with r e s p e c t  to a 0 : r = r ' / a  o, r I = rl/ao, a = a ' / a  o. 

T h i s  e x p r e s s i o n  in the f i r s t  a p p r o x i m a t i o n  d e t e r m i n e s  the  unknown r e l a t i o n  p(k).  

Thus ,  the  p r o b l e m  of the  d e v e l o p m e n t  of c a v i t a t i o n  n e a r  a f r e e  s u r f a c e  c o m e s  down to the  s o l u t i o n  of  
a s y s t e m  of  equa t i ons  r e l a t i v e  to p and  k: 

r l  
Vr~ ~- h ~ - -  2 h r l  COS @l 

, dk 2 

(2.6) 

w h e r e  

t = 0  k = i ,  )~=0, a = t ,  

and  a 1 i s  d e t e r m i n e d  b y  the  fo l lowing  e m p i r i c a l  func t ions  for  s m a l l  e x p l o s i v e  c h a r g e s :  
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t_ 

Fig .  2 

ai~-~ 1 +0.022.40~T/ao, T < i0-a:mc, 

ai-~ t58:5(~/ao)~ 4 , z > tO -4 sec, 

where  r = t + ( r - r l ) / c 0  (the l a t t e r  e x p r e s s i o n  for a t is t aken  f r o m  [161). 

As the ca l cu l a t i on  showed, the cav i t a t i on  nuc l e i  r e a c h  v i s ib l e  s i zes  (10-2-10 - i  cm) af ter  a shor t  t ime  
and t h e r e f o r e  in many  c a s e s  a(t) can  be se t  equal  to uni ty .  It  was  me n t i one d  e a r l i e r  tha t  [8] con t a in s  i n f o r -  
ma t ion ,  g e n e r a l i z e d  on the b a s i s  of n u m e r o u s  e x p e r i m e n t s ,  on the s ta te  of f r ee  gas in l iqu ids ,  which can  be 
employed  for the se l ec t ion  of the p r o p e r  k0 and R 0. For  example ,  for  wa te r  which has  b e e n  s t and ing  k0 = 
10-12-10 -1~ and  R 0 = 5 . 1 0  -5 cm,  while  for r e l a t i v e l y  f r e sh  wa te r  k0 = 10-e-10 -s and R 0 = 5" 10 -3 cm.  

C a l c u l a t i o n s  of the deve lopment  of the cav i t a t i on  zone w e r e  p e r f o r m e d  for  d i f fe ren t  R0, k0, ao, and  h. 
In Fig.  2a we p r e s e n t  the r e s u l t s  of the ca l c u l a t i on  of the v i s ib l e  cav i t a t i on  zone (darkened reg ion)  for  t = 
16, 32, 48, and  64 ~ s e c  with h ' / 2  = 5.3 cm,  k 0 = 10 -11 , R 0 = 5 . 1 0  -5 cm,  a 0 = 0.53 c m  (1 g EC), p(0) = ' 4 . 104  
a tm,  and T1 = 3. The s i z e s  of the cav i t a t i on  nuc l e i  in it  r e a c h e d  >- 10 -2 c m  by the ind ica ted  t i m e s .  F r a m e s  
of h i g h - s p e e d  photography of the deve lopment  of the cav i t a t ion  zone upon the exp los ion  of a 1-g cha rge  a t  
a depth of 5.3 cm a r e  shown for c o m p a r i s o n  in F ig .  2b for the s a m e  t i m e s  a s  in  Fig.  2a. In the so lu t ion  of 
s y s t e m  (2.6) the d y n a m i c s  of the bubb le s  was t aken  into account  only in the phase  of nega t ive  p r e s s u r e  b e -  
cause  of the e x t r e m e  s m a l l n e s s  of k 0 and R 0. 

The s y s t e m  (2.6) a l so  a l lows one to d e t e r m i n e  the prof i le  of the r a r e f a c t i o n  wave in  the  cav i t a t i on  
zone.  As the ca l cu l a t i on  showed, p (k(t)) depends  e s s e n t i a l l y  on the r i s e  t i m e  of the r a r e f a c t i o n - w a v e  f ron t ,  
which is  r e g u l a t e d  by the fac tor  a0 in  the f i r s t  equa t ion  of (2.6). The v a l u e  of a0 can be taken  as  uni ty  a t  
the t i m e  t = 0 (the ca se  of the i n s t a n t a n e o u s  app l i ca t ion  of the m a x i m u m  nega t ive  p r e s s u r e )  or r e p r e s e n t e d  
in the fo rm of a t i m e  func t ion  which d e t e r m i n e s  the law of p r e s s u r e  r i s e  in the r a r e f a c t i o n - w a v e  f ron t  - the 
" p i l e - u p "  of the f ront .  The l a t t e r  is  d e t e r m i n e d  e i the r  e x p e r i m e n t a l l y  or ,  for example ,  n u m e r i c a l l y  on the 
b a s i s  of the data of [2, 6] f r o m  the d i f f e rence  in the t i m e s  of a r r i v a l  a t  the point  unde r  c o n s i d e r a t i o n  of the 
c h a r a c t e r i s t i c s  of the r a r e f a c t i o n  wave with zero  and m a x i m u m  a m p l i t u d e s .  In Fig .  3 we p r e s e n t  the  p (t) 
p ro f i l e s  for t h r ee  r e l a t i v e  d i s t a n c e s  f r o m  the c e n t e r  of the cha rge  on the ax is  of s y m m e t r y  ca l cu l a t ed  f r o m  
(2.6) with k 0 = 10 -1~, R0 = 5 '  10 -5 cm,  h ' / 2  = 3 cm,  and  p(0) = 4 .104 a tm .  The r a r e f a c t i o n - w a v e  p ro f i l e s  
in the ca se  of a o n e - p h a s e  l iqu id  a r e  shown by dashed l i ne s ,  whi le  those  ca l cu l a t ed  f r o m  the t w o- phase  mod-  
el  for a r i s e  t i m e  of 0.1 # sec for  the r a r e f a c t i o n - w a v e  f ron t  a r e  shown by  sol id  l i n e s .  P r o f i l e s  of the 
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rarefact ion wave with different "pile-ups" of its front a re  shown in the middle of Fig. 3 for two cases :  Fig. 
3a with r l = 5, the negative p ressu re  is applied instantaneously, the dashed line is the profile in a one-phase 
liquid, and the solid line is the profile in a two-phase liquid; it is seen that large negative p re s su res  a re  
retained in the cavitation zone for about 0.05-0.1 ~sec (the calculation coincides with the known exper imen-  
tal data); Fig. 3b with r 1 = 3.5; 0.1-/zsec "pileup" of the front, dashed-dot  line (corresponds to the solid line 
in the main drawing for the same rl),  maximum amplitude has decreased  more  than fivefold in compar ison 
with a one-phase liquid; 1-Psec  "pileup" of front, solid line, here  the maximum amplitude is a l ready 30 
t imes smal ler  than in a one-phase liquid. 

In Fig. 3a the negative p ressu re  has a lmost  completely disappeared in a time of ~0.1 #sec ,  while the 
cavitation bubble has not even reached its visible size by tl~is time; in Fig. 3b the p res su re  disappears when 
the bubble has expanded to about half  of its maximum radius.  

Osci l lograms of the p re s su re  taken at  a distance of 14 cm from a 1-g charge in "deep" water (Fig. 
4a) and at a distance of 4.5 cm below the free surface over the charge (Fig. 4b) are  presented for a qualitative 
comparison in Fig. 4. The amplitude of the maximum pressure  in the shock wave (Fig. 4a) is about 380 atm; 
the amplification scale for the measurement  of p ressu re  in the ra refac t ion  wave (Fig. 4b) is increased by 
10 t imes;  the experimental  value of the maximum amplitude of the ra refac t ion  wave is 20 atm, while that 
calculated by the scheme of an imaginary source for a one-phase liquid is 217 atm. 

In Fig. 5 we show the dependences k(t) with a 0 = 0.53 cm, h ' /2  = 5.3 cm, k 0 = 10 -l l ,  R 0 = 5 .10  -5 cm, 
and p (0) = 4.104 atm for points 1-3 on the axis of symmet ry  and points 4-6 along a radial  line at an angle 
01 = 70 ~ to the axis:  for all the curves plotted the time t = 0 cor responds  to the moment of a r r iva l  of the 
rarefac t ion  wave front at the given point. The position of the charge and of points 1-6 relat ive to the free 
surface are  shown in Fig. 5 for Clearness.  The gas concentrat ions corresponding to the visible size of a 
cavitation bubble are  marked by a dashed line. The time interval between the two moments  when the k (t) 
curve c ros se s  the dashed line determines  the "lifetime" of a visible bubble at  the given point: the visible 
cavitation disappears in about 400 # sec at the axis and at point 4 on the radial  line. 

We note that at a given moment the gas concentration can vary  by an order  of magnitude or more  over 
a c ross  section of the cavitation zone, which corresponds  to different intensities of darkening of the zone. 

The calculated resu l t s  presented give reason  to assume that the proposed two-phase model of the 
development of the cavitation zone sat isfactor i ly  describes the p rocess  of development of the zone and makes 
it possible to const ruct  a rarefac t ion-wave profile which is close to the actual profile.  
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